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1. INTRODUCTION

Let S be a Polish Abelian semigroup with zero element, H: S ]+

a nonnegative continuous function and p a measure on (the Borel a-field

of) S such that the following integral or (inverse) convolution equation

is satisfied:

H(x) = J H(x+y)(dy) x e S. (1.1)

Recently, Davies and Shanbhag (1987) studied (1.1) and showed in partic-

ular that if S is embeddable into a locally compact second countable

Hausdorff Abelian group and certain mild conditions are satisfied, then

the H in (1.1) has an integral representation as a weighted average of

the V-harmonic exponential functions on S. A function e: S + R+ is

called an exponential function if it is continuous and satisfies

e(x+y) = e(x)e(y) for all x, y e S; an exponential function e is called

p-harmonic if it satisfies f e(x)u(dx) = 1. A special case of this re-

sult with S itself as a locally compact second countable Hausdorff

Abelian group was established earlier by Deny (1961) and its specialized

version when H is bounded (with a modification that it is not necessarily

nonnegative) and v is a probability measure by Choquet and Deny (1960).

As shown by Shanbhag (1977), Shimizu (1978), Rao (1983), Lau and

Rao (1982, 1984), Rao and Shanbhag (1986), Ramachandran (1982, 1984) and

Davies and Shanbhag (1987), these results have applications not only in

renewal theory but also in characterization theory of probability dis-

tributions. Several characterizations of the exponential, Weibull and

geometric distributions (or their variants) based on record values,

order statistics, hazard function and the mean residual life function

71,.-
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etc., follow from these results. The Rao-Rubin theorem (1964) on damage

models in a global form leading to characterizations of several discrete

probability distributions and related characterizations of point pro-

cesses and characterizations of stable distributions based on a certain

factorization can also be obtained from these results.

Shimizu (1978) and more recently Ramachandran et at (1987) have

considered several modified versions of (1.1) in the case of S = JR or

S = ]+ that have applications in characterization theory especially

in connection with stable distributions. Shimizu (1980) and Gu and Lau

(1984) have also discussed (1.1), in the specialized situation of

S = ]R+, Involving an additional error term; these latter results are

useful in arriving at stability versions of certain characterization

properties. -/

fn-the-present paper,-we-*-m at extending the Davies-Shanbhag

(1987) result to situations covering the problems considered by Shimizu

(1978, 1980), Gu and Lau (1984) and Ramachandran et ai (1987). 4n- .

Section 2,-wA give5,the results when H is bounded anci'is replaced by

a certain bounded signed measure subsuming the specialized versions of

the results given earlier by Shimizu (1978) and Ramchandran et al (1987);

these turn out to be also extended versions of the Choquet-Deny theorem.

IIrSection 3, wejconsider an extension of the Davies-Shanbhag result

for the case of two simultaneous equations yielding the results of

Ramachandran et at (1987) and those arrived at by some of the authors

as special cases. Iff Section 4, we obtain extended versions of the re-

sults involving error terms given earlier by Shimizu (1980) and Gu and

Lau (1984), and finally in Section 5, we discuss some applications.

1FS
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2. EXTENDED VERSIONS OF THE CHOQUET-DENY THEOREM

The following results are various extensions of the Choquet-Deny

theorem:

THEOREM 1. Let S be a Polish Abelian semigroup with zero element,

H: S - P a bounded continuous function, and p and v subprobability

measures on S such that v + v is a probability measure on S and

H(x) = fsH(x+y)(V- v)(dy), x e S. (2.1)

Also let

+ *2 *m (2.2)

m=O

with the usual notation for convolution. (Clearly the measure a defined

here is a probability measure.) Then for each x e S,

H(x+y) if y e S*(a) (and hence if y e supp(p)),H(x) = j xy)(2.3)-H(x+y) if y e supp(v),

where the notation supp(.), as usual, stands for the support of the mea-

sure (concerned) and the notation S*(-) stands for the smallest closed

subsemigroup of S with zero element such that it includes the support of

the measure.

Proof. We can rewrite (2.1) as

H(x) = JH(x +y)u(dy) - J5H(x+y)v(dy), x e S (2.4)

yielding in view of Fubini's theorem

I u

_ . .. .. ,. z : ----



4

H(x) IsH(X+Y)(p+v* 2 )(dY) - fsH(x+Y)v*P(dY)

f SH(x+y) V + IV P**m) (dy) - H(x(+y)v. (dy),S m=O

n = 0,I,..., x e S. (2.5)

Observe that to arrive at (2.3), we have used successively the relation

fS H(x + y), * *n(dy) = L{IsH(x +y + z)U(dz)

- H(x+Y+z)v(dz)}v * ,*n(dy)

= f H(x+Y)V * P*(n+l )(dy)

sH(x+y)v 2  V*n(dy),

n=,l,..., x e S.

Using, in particular, the fact that H is bounded and p(S) + v(S) = 1,

we see that for each x e S, the expression on the right-hand side of

(2.5) tends as n to fsH(x+y)a(dy) with a as the probability mea-

sure given by (2.2). We have then the integral equation

H(x) =f f H(x+y)o(dy), x e S. (2.6)

The proof of Corollary 1 of Theorem 1 on p.21 of Davies and Shanbhag

(1987), except for its last sentence, remains valid in the case of the

equation (2.6) and yields that

H(x+y) = H(x), x e S, y e S*(a). (2.7)

l .J . ,:.€ .'¢ ,€ ' C.r ," ,w 
"

.'' ' . ."G' '." , .. . "• ,." '. "• , . ,. ".. .
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The equation (2.7) establishes the first part of the assertion (2.3)

and in turn implies

H(x+y) = H(x), x e S, y e supp(p) U supp(v 2) (2.8)

giving in view of (2.1)

H(x)v(S) = -IH(x+y)(dy), x e S. (2.9)

We have now to establish only the second part of the assertion (2.3).

This result is trivially valid for v(S) = 0. We can therefore assume

that v(S) > 0. If z e supp(v), then z + supp(v) c= supp(v 2 ) and hence

we get from (2.8) and (2.9)

H(x +z)v(S) = -fs H (x + z + y) (dy)

= -H- S), x e S,

which implies in view of the assumption v(S) > 0 that

H(x+z) = -H(x), x e S.

Consequently, we have the second part of the assertion in question,

and hence the theorem. 3

COROLLARY 1. The assertion of the theorem holds if the assumption

that H is bounded is replaced by the weaker assumption that H(.+y) - H(.)

is bounded for each fixed y e supp(p) U supp(v) (with the implicit reI

quirement that H is (u+ v)-integrable) provided v(S) > 0.

Proof. For every y e supp(p) U supp(v), on applying the theorem to

H(-+y) - H(.), we have



H- ) - +H(-+y) - H(.) if z e S*() ( .)

-(H(.+y) - H(.)) if z e supp(v).

From the first equation in (2.10), we get for every x e S, y e supp(v)

and z e S*(a) LI

H(x+y+z) - H(x+y) = H(x+z) - H(x)

and from the Second equation in (2.10), we get for every x e S,

y e supp(v) and z e supp(p)

H(x+y+z) - H(x+y) = -(H(x+z) - H(x)).

Consequently, it follows that H(x+z) - H(x) = 0 for every z e supp(P)

and x e S. On integrating the second equation in (2.10) over y with re-

spect to measure v and simplifying, we get in view of (2.1)

( H('+y+z) + H(.+y))i(dy) - (H(.+z) + H(.))

= v(S){H(. +z) + H(-)}, z e supp(v). (2.11)

Since H(.+y) = H(.), y e supp(p), (2.11) implies readily that

-V(S){H(.+z) + H(.)} = v(S){H(.+z) + H(.)}, z e supp(,),

which implies in view of the assumption v(S) > 0, the second part of the

assertion (2.1). The first part of the assertion is now obvious in view

of the continuity of H and what is already arrived at. 3

COROLLARY 2. Let S, P, v, H, a and S*(a) be as in Corollary 1.

If there exists a dense subset A of S such that for every x e A we have

a y e S*(a) with x + y e S*(a), then

H(x) = H(0), x e S

and either H(O) = 0 or v(S) = 0.
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Proof. From the theorem we get

H(x+y) H(x), x e S, y e S*(a). (2.12)

This implies that H(x) = H(x+y) = H(O) for every x e A and y e S"(or

and hence in view of the continuity of H, we have H(x) = H(O) for all

x e S. From the equation (2.1) or from the second assertion of the

theorem, it is then clear that either H(O) = 0 or v(S) = 0. 0

Remark 1. Corollary 2 yields the Choquet-Deny theorem as

a special case and hence this result, as well as Theorem 1 and Corol-

lary 1, could be considered as extensions of the theorem in question.

Theorem l and Corollary 1, for special cases of S = F+ and S = IR, have

been dealt with either by Shimizu (1978) or by Ramachandran et at (1987);

the arguments used to establish the results for the generalized situation

of the present paper have been adapted from Ramachandran et al (1987)

with the required modifications.

.1

-%
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3. TWO SIMULTANEOUS INTEGRAL EQUATIONS

Let S be a Polish Abelian semigroup with zero element, G: S - 1+ and

H: S -) R+ continuous functions, and v and v measures on S such that

G(x) = fS G(x+y)(dy) + fSH(x+y)v(dy), x . S

1 .(3.1)

H(x) = J H(x+y)p(dy) + J G(x+y)v(dy), x e S

The equations (3.1) for S = IR+ and S = R have been dealt with by many

authors including Ramachandran et aZ (1987) in connection with the charac-

terization problems of probability distributions; we shall provide the

necessary details in Section 5 of the paper. It is interesting to note that

(3.1) with v(S) = 0 reduces to a set of two equations of the type considered

by Davies and Shanbhag (1987) and hence (3.1) may be viewed as a generalization

of the Davies-Shanbhag integral equation. From what is shown in Davies and

Shanbhag (1987), it is clear that to have the integral representations of

Deny or something close to it for G and H in (3.1), we require some further

conditions to be met.

Following the notation of the last section, we shall now introduce

the condition given below:

CCNDITION A. Let S be the smallest closed subsemigroup of S with zero

element such that it includes supp(p) U (supp(v) + supp(v)). The S satis-

fies supp(v) a S and there exist subsets B and D of S with the following

properties :

(a) B e O(S), (U +v)(S\B) = 0,

(b) the subsemigroup generated by D U S*(i +v) is dense in S,

(c) for every x e D and z e B\{O, we have n > 0, k > 1 and Yl' ""'Yk

I9
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in S*(V +v) such that

x + nz + Yl + "'" + Yr-1 e S + yr' r -

and

x + nz + y1 + ... + Yk 6 S*(p+v).

We have then the following theorem.

THEOREM 2. Suppose ({O1) + v({O}) < 1, and the Condition A is met.

Then either H(x) = G(x) = 0 for all x e S or we have a probability space

(0,1,P) and product measurable functions Ci: Sxs - ]R+, i = 1,2 such that

G(x) = G(O)E(W1(x,.)), H(x) = H(O)E{ 2(x,-)}, x e S and the following con-

ditions are met:

(i) ti(x+y,.) = Ei(x,,)&i(y,.) a.s. [P1 for all x,y e S*(v +v),

i = 1,2.

(ii) , (x,)(p+v)(dx) 1 1 a.s. [P], i = 1,2.

(iii) &,(x,.) - 0 if G(x) = 0 and G(O) # 0 and F2 (x,.) 0 if

H(x) = 0 and H(O) # 0.

Proof. Observe that (3.1) implies

G(x) + H ( x+y(+v)(dy), x . S. (3.2)
ISZ

Consequently from Lema 5 of Davies and Shanbhag (1987), it follows that

G(x) + H(x) = 0 for all x e S if G(O) + H(O) = 0. We now need only the

case of G(O) + H(O) > 0 and hence without loss of generality that of

G(O) + H(O) = 1 to be considered. From the argument leading to (41) in

the proof of Theorem 2 of Davies and Shanbhag (1987), it follows that the

present result is valid in the case of v(S) = 0. Now, as in Davies and

Shanbhag (1987), we can assume without loss of generality the measure

U-;



VJ Uj V i- V bL F

10

P + v in (3.2) to be a-finite and hence both measures P and v to be

a-finite. Using Fubini's theorem and an argument essentially of the type

used in establishing (2.5), we get in view of (3.1) that

G(x) =JG(x+Y)(j+ v* 2* )(dy)

fS m=O

+ fH(X +Y)4.*(n+l)(dy), x e S. (3.3)

(It may be noted here that by v* 2* *m , we really mean the measure on S

given by

IfS"'sI{x((xl,...Xm+2 )): x+4 ... +xm+ 2 e B}V(dXl)v(dx 2 )P(dx3 )'"p(dXm+ 2)

for each Borel set B; the measure v **(n+l) is defined analogously.)

We have in view of (3.2),

JH(x +y)p * v*(n+)(dy) < J (G(x +y) +H(x +y))v*p*(n+l)(dy)

= JsE*(E(x +y,.)) vp*(n+l)(dy),

x s S, n > 0, (3.4)

where is the E of our theorem when G + H is taken in place of G,

p + v is taken in place of p, and v - 0, and E* is the corresponding

expectation relative to the concerned probability measure. The right-

hand side of (3.4) equals for each x e S and n >0

E*(& (x,.)( S (y,.)V(dy) ) n + l f (y,.)v(dy))

S s
with



0 < J(y,.)Wdy) = 1 - Jy.)VdY) <1I a.s. [P*]- S fSH

(in-obvious notation) and

E(&(x-)(= +G((x ) < - for all x e S.

The Lebesgue dominated convergence theorem implies then that the right-hand

side of (3.4) and hence the second integral in (3.3) tends to zero as

n + . We then get from (3.3)

G(x) = f G(x+y)(p+ II10 v 2  ,*m)(dy), x e S. (3.5)

(Note that to obtain (3.5) from (3.1), the part supp(v) c:S in Condition A

is not used.) The same equation is also valid for H by symmetry. Suppose

we denote the measure appearing in (3.5) by a. In view of (3.5) and

Theorem 1 of Davies and Shanbhag (1987), we have either G(O) = 0 or there

exists a probability space (al, 0;I' P(1)) and a product measurable func-

tion E M: Sxfl1 + 1R+ such that all the conditions appearing in Theorem 1 of

Davies and Shanbhag (1987) (with obvious notational changes) are satisfied;

an'analogous result is also valid for H. From the equations corresponding

to (17), (18) and (19) in Theorem 1 of Davies and Shanbhag (1987), and the

stipulation that supp(v) a S, we get in view of Fubini's theorem

I S t(l)(y .) (dy))2  S (i)(y,)v(dy))2 a.s. [p(1)],

i : 1,2. (3.6)

(In view of (19), Fubini's theorem works here; for the details as to how

the theorem applies, see Section 2 and especially Lemma 1 of Davies and

Shanbhaq (1987).) From (3.6), we Qet
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SE ( y -X v +v)(dy) = 1 a.s. [p (i), i 1,2. (3.7)f M

On taking the expectations in (3.7) and using Fubini's theorem once

again, we get in view of (16) of Davies and Shanbhag (1987)

JG(y)(v+ v)(dy) = G(O)

(3.8)

J H(y)(i+v)(dy) = H(O)

If G(x) > 0, then applying the first result of (3.8) to G(x+-), we see

that

f G ~x+y){p+v)(dy) = G(x). (3.9)

This last identity is also valid if G(x) = 0 since in that case, in view

of Condition A, it follows trivially from (3.5) that G(x+y) = 0 for every

y e supp(u +v) (indeed from Lemma 5 of Davies and Shanbhag (1987) it follows

that this is so for every y e S). Thus, it follows that (3.9) is valid for

every x e S. The identity is also valid for H by symmetry. Since the

version of the present theorem is valid for the special case of v(S) = 0,

we have now probability spaces (nil, lit Pi ) , i = 1,2 and product measurable

functions Ei: Sxaii+o.']P, i = 1,2 such that the analogues of (i) and (ii)

with P replaced by Pi and the obvious result corresponding to (iii) hold.

Considering (11, 1, P) to be the product probability space corresponding to

(flis i Pi), i = 1,2 and defining

& x l(xi), i = 1,2, x 6 S, l 1 e Qi welrriv= 1at lh w2 2u

we arrive at the required result.
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Remark 2. In view of the remark made immediately after (3.5) and the

crucial role played by (3.5) in the proof of Theorem 2, it should be pos-

sible to give other versions of Theorem 2 altering the requirements in

Condi ti on A.

Remark 3. If S is countable, clearly Theorem 2 is valid with a.s. [P]

deleted in (ii) and (iii). This result yields among other things a recent

result of Ressel (1985) as a special case.

Remark 4. Suppose S is a closed subsemigroup of a locally compact

second countable Hausdorff Abelian group and we have a compact subset K of S,

which is the closure of a nonempty open subset of the group, and a subset

D* dense in supp(v+1) with the property that for every x e D* \{O} there

exists an x' e K such that x e S + x'. Then Theorem 2 remains valid with

a.s. [Pi] in (i) and (ii) deleted and also i(.,w) as (p+v)-harmonic

exponential functions on S for each w e c. This follows from the argument

of Davies and Shanbhag (1987) appearing on pages 27 and 28 in the proof of

Theorem 2.

COROLLARY 3. Let n >1, S S i with Si  Z( {O, _l , ±2,. o})or

]NO(= {O,1,2,...}) or -IN or IR or IR+ or -I+ and let X be the restriction to
n

S of a Haar measure on the smallest subgroup of IR containing S. Let

g: S ) ]R+ and h: S - ]+ be Borel measurable functions that are locally inte-

grable with respect to X, and U and v be a a-finite measure on S with

(({O}) + v({O}) < 1. Assume that Condition A is met. Then

g(.) = Jg(. +y)v(dy) + fh(. +y)v(dy) a.e. [A]

h(.) = f h(.+yhj(dy) + fg(.+y)v(dy) a.e. [A]

JS
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implies that

g(.) = J e<"X>a1(dx) a.e. [x]

[.-,, _]n

and

h(.) =,2(dx) a.e.
1-_,,_]n

where a and a2 are measures on [__,_]n such that

aii({x e [__,_]n: fse <XY>(1+v)(dy) # 1 or

<x,y> is undefined for some yeS)) = 0, i = 1,2

(and we define e"0 = 0, e0 = - and 0.- = 0).

Proof. The result follows essentially from the arguments of Davies

and Shanbhag (1987) used to prove Corollary 2 of Theorem 2. Alternatively

one could prove this result as follows. Without loss of generality, we

can assume S = H% S with the first m of the S, s to be either equal to

Z or IN0 and the remaining Si's to be equal to P or ]R+ where m is a fixed

integer such that 0 < m < n. For every positive integer k, take ak to be
pn

the point in ]R+ that has first m coordinates to be equal to zero and

the remaining coordinates equal to k-1 . Observe that for each k,

G(.) = f{Qkg(.+y)(dy)}/X(Qk) and H{.) = ifQkh( -+ y )x(dy )}/x(Qk) with

Qk = [O'ak] are continuous functions satisfying the requirements of Theo-

rem 2. In view of what is said in Remark 4, it follows that in the pre-

sent case the result in terms of (v +v)-harmonic exponential functions is

valid. Also in view of the local integrability of g and h, Gk + g and

Hk - h, aoe. [X]. Using the relevant continuity theorem for Fourier

transforms of measures, we can then conclude that the corollary is valid.

~~W
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(This argument in the specialized situation of the Davies-Shanbhag problem

was hinted in Remark 6 of Davies and Shanbhag (1987).)

Remark 5. There are some tvpoqraphical/Drintina errors or minor

inaccuracies in Davies and Shanbhag (1987). Although most of these are

easily detectable, it may be noted in particular that in this paper in the

last line of the proof of Lemma 1, BO has appeared as B0; in Remark 2,

(3) has appeared in place of (10); in Remark 4, + is more appropriate

than U and Condition B is more appropriate than (d) of Condition A.

Also the definition of N4 appearing on p.28 should have been:

"The null set on which n(x,-) = n(O,.)E(x,.) for some x or (x+y,.-)

&(x,.)t(y,.) for all x, y in a fixed countable dense subset S' of S."

Remark 6. From Ramachandran et al (1987), it is evident that in the

case of S = R or R+ or or IN0 (or -R+ or -]NO ) , except in the case of

v(S) = 0, the G and H in Theorem 2 are equal. In general, however, this situ-

ation does not remain valid (although it is always true that fs(H( .+y)v(dy) =

fsG(. +y),(dy)). This is illustrated by the following example.

EXAMPLE. Let S = I and V and v be measurable on S such that p has

full support with its restriction to {(x,y): x e ]NO, y = O} as a proba-

bility measure and u has {(0,l)} as its support. Define

c if x = O,l,.. y = 0
H(xy) = "o r

0 otherwise

where c is a fixed positive constant, and take G 0 0. It trivially follows

that, in this case, the G and H satisfy (3.1) and also all the requirements

of Theorem 2 are met. However, we do not have here G = Ho The same point

could obviously be illustrated from several other examples.

• 
. %y.-;i? -
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4. A STABILITY THEOREM

We now give the following stability theorem. The stability theo-

rems are of importance in characterization theory of probability distri-

butions since they are useful in assessing whether or not the distribu-

tion can be taken to be close to a certain distribution when it satisfies

a characterization property of that distribution approximately. Since

the integral equation (1.1) is involved in characterizations of several

probability distributions, it should therefore be worthwhile to discuss

the associated stability theorem:

THEOREM 3. Let S be an Abelian metric semigroup, H: S - IR+ a Borel

measurable function c e [0,1) and V a a-finite measure on S such that

H(x) = f H(x+yli(dy) + u(x), x e S, (4.1)

where a is such that lI(x)l <a*(x) for all x e S with a* as a real-valued

Borel measurable function satisfying

-Sq *(x+y)l(dy) <_ c*(x), x e S. (4.2)

Then the H can be expressed as

H(x) = H,(x) + H2(x), x e S, (4.3)

where H1 is a nonnegative Borel measurable function on S satisfying

Hs(x) = fH l(x+y)(dy), x e S, (4.4)

and H2 is a Borel measurable function on S such that IH2(x)I is bounded

by a*(x)(I- c)- for each x e S.
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Proof. Using Fubini's theorem, we get successively for n= 1,2,...

H(x) = fsH(x+y),*n(dy) + i fa(x+y)p*m(dy), x e S. (4.5)

(The requirement of the integrability of a(x+.) with respect to the measure
*1

p for each m = 0,1,..., and x e S is met in view of (4.2).) Also (4.2)

implies that

io j(x+y)lp*m(dy) < a*(x)(1- c) "I , x e S. (4.6)M=O S

In view of (4.6), it follows that

n- a +(x+y)u*m(dy)
m=O fS+

and

n-lI a-(x+Y)i*m(dy)

m=O S

converge to finite limits as n - for each x e S with obviously the limit-

ing functions as Borel measurable functions. This observation, in turn,

implies that

n-i
nIm S( x + Y)*m(dy)m=O f

converges as n - to a Borel measurable function. Denote this function

by H2. Because of (4.6), it follows that IH2(x) <a*(x)(l- c) -1 for each

x e S. In view of (4.5), it follows that fsH(x+y)*n(dy) tends as n

to H(x) - H2(x), a nonnegative Borel measurable function, for each x e S.

Denote this new function by H1. From (4.5) and (4.6), it follows that

f H(x+Y)P*n(dy) I H(x) + a*(X)(l- C)1  x e S, n > 1.

H ) ' ' -(X (lV4
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Since

JH(x y~ridy) H fJ (x + y + z P (dz)}gdy),

n 1,2,..., x e S

and H(x+-) and a(x+-) are u-integrable for each x e S, the Lebesgue

dominated convergence theorem implies that the Hl satisfies (4.4). (The

fact that the H1 satisfies (4.4) could also be seen by noting that, in

view of (4.1) and (4.6), we have for each x e S, H1(x+-) to be p-integrable

satisfying

H(x+l) (dy) = fH(x+y)(dy) - sH2 (x+y)p(dy)

= J H(x+y) (dy) - I f a(x+y)p*m(dy)00
= H(x) - a(x) - f J(x +y)p*m(dy)

= H (x).)

COROLLARY 4. Let S and x be as in Corollary 3 and c e [0,1). Let

h: S R J+ and a: S - JR be Borel measurable functions that are locally in-

tegrable with respect to A and p be a a-finite measure on S such that

h(.) = i h(- +y)u(dy) + ( . [x]

with Jcl(x) < a*(X) for every x e S -or some A-locally integrable function

a* satisfying

f a*(x +y)l(dy) < ca*(x) for a.e. [x], e S.

Then the h can be represented as
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h(-) : hi(.) + h2(.) a.e. D]

with

: . e<''x>v(dx),

v being a measure on [_,,]n such that

v({x e [__,_]n: e<X,y>v(dy) I or <x,y> is undefined for

some y e SI) = 0,

and h2 as a A-locally integrable Borel measurable function on S satisfying

Ih2 (x)I < a*(x)(1-c)-l for every x e S.

Proof. The result follows from the argument of the proof of Corol-

lary 3. In this case, the Hk defined in the proof of Corollary 3 satisfies

(4.1) with a replaced by ak' where ak is such that

Otk( .) = I| a(.+y)X(dy)}/X(Qk), k = 1,2

#Qk

ak oviouly atisies akanalog-
ak obviously satisfies (4.2) in the statement of Theorem 3 with a k

ously defined and we get in obvious notation

Hk(X) = Hlk(x) + H2k(X), x e S, k = 1,2,... (4.7)

with Hlk and H2k satisfying the conditions corresponding to those stated

in the statement of Theorem 3. The continuity theorem used in the proof

of Corollary 3 implies, in view of the local integrabiliy of h, a and a*,

that the present corollary is then valid. (Incidentally, in the statement

of the corollary, the local integrability of a is implied by that of a*

and hence one could have avoided mentioning it specifically.)

• .
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Remark 7. In the case of S = IR+, the result of Corollary 4 when W

is a probability measure and a*(x) = c'e- x , x > 0 with c > 0 is arrived

at by Gu and Lau (1984) through their Theorem 1. However, it may be noted

that the Gu-Lau paper contains some minor inaccuracies. For instance, in

the proof of Theorem 1 as well as of Theorem 2 of the paper, in many

places 'a.e.' is not mentioned even when the argument used required this

to be there. It is also worth pointing out here that in Section 4 of the

paper, Gu and Lau (1984) discuss three stability results concerning prob-

ability distributions through their Theorems 4.1, 4.2 and 4.3. Certain

versions of these results follow as special cases of our Corollary 4.

(Incidentally, we may point out here that since the error terms are

usually small, €"l is better as a notation than the Gu-Lau E mentioned

above in the exponent of a*(x).)

-I
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5. APPLICATIONS OF RESULTS IN CHARACTERIZATION THEORY

As mentioned in the Introduction of this paper, characterization

theory of probability distributions on IR or I+ have several results in-

volving the convolution equation. Galambos and Kotz (1978), MoB. Rao

and Shanbhag (1982), Rao (1983), Rao and Shanbhag (1986) and Davies and

Shanbhag (1987) have either reviewed or implicitly discussed the litera-

ture in this connection. Klebanov (1980), Sahabov and Geshev (1974) and

Alzaid et at (1987) are among others discussing the literature on variants

or extensions of the specialized versions of the convolution equation.

There exist also results on multivariate probability distributions

n ninvolving the equation (1.1) for S = IR+ or S = 1 . A brief account of

such results is given by Davies and Shanbhag (1987). The authors of this

last paper have also indicated the possibility of arriving at further

characterizations of multivariate probability distributions by extending

in particular the strong memoryless characterization property of the ex-

ponential distributions arrived at by Ramachandran (1979). This includes

as a special case the extension of the characterization of the exponential

distribution based on the memoryless property at certain specific points

given by Marsaglia and Tubilla (1975) to the case of multivariate proba-

bility distributions.

The results arrived at in the present paper, besides extending the

important results of Choquet and Deny (1960) and Deny (1961) to more

general situations, yield several of the other characterization results

falling beyond the scope of Davies and Shanbhag (1987) as special cases.

In particular, the results of Section 2 of the present paper, especially

Corollary 1, give the characterization discussed in Kagan et al (1973),

I
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Shimizu (1965, 1978) and Davies and Shimizu (1976) of nonvanishing charact-

istic functions * on. IR satisfying the functional equation

Sf(01] n(tu)d(u) + f(01] lnO(-tu)dv(u), (5.1)

t e 1R+

when 1, and v are a-finite measures satisfying some mild conditions. (To

see the application of Corollary 1, express (5.1) in terms of the corres-

ponding two equations satisfied by -Re(ln,(t)) and Im(In¢(t)) respectively.)

The multivariate extension of the result cited is also now easy to obtain;

the details about this latter characterization will be provided in a

forthcoming review paper to appear in the Festschrift volume for

P. R. Krishnaiah.

The results given in Section 3 of the present paper obviously extend

the result given by Ramachandran et aZ (1987) although we have not exploited

fully the line of approach of this last paper. Also these results are

connected with the results of Section 2 since (3.1) is equivalent to

G(x)+H(x) = f (G(x+y) + H(x+y))(ii+v)(dy), x e S,

G(x)-H(x) = f (G(x+y) - H(x+y)) (j-v)(dy), x e S.

Finally, the results on a stability version of the convolution I
equation presented in Section 4 give as special cases, as mentioned earlier,

the stability Theorem 1 of Gu and Lau (1984) and also certain versions of

the stability results on the exponential and Pareto distributions given

in this paper. A stability result corresponding to the multivariate

generalization of Ramachandran's (1979) characterization of the exponen-

,-' ~ ~ ~ V.''~ V~ Y)
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tial distributions is easy to obtain as follows. Suppose we define X and

Y to be n-component random vectors as in Davies and Shanbhag (1987) on

page 32 with a modification that P{X>Y+xjX>Y} = P{X>x} is replaced by

P{X> Y+xIxY} = P{X> x}(-S(x)), where IS(x)l < Ke"<n 'x> with K e1R+

and n e R and 0 0. Then, in view of Corollary 4, after a minor manipu-

lation, it follows that

P{X>x} -S*(x)) - 1- S*(O) exp{-<Xx>}V(dx), x e IR,

where V is as defined in Davies and Shanbhag (1987), for some S* such that

IS*(x)I < Kexp{-<n,x>}(l- c)"I with c = E{exp{-<n+a, Y>})(P{X> Y})-I when-

ever there exists an a eI Rn such that c < 1 and P{X >xexp{x<,x>} is

Ncomponent-wise decreasing on ]R+. One could obviously extend this result

by replacing exp{-<n,x>} by an appropriate Laplace-Stieltjes transform.

,- - ,p " " " ' " " ' " - " " ' . - " " . . ¢ w ' - ' p. . . - w - -4 '~
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